Cargando…
Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms
Forest aboveground biomass (AGB) and its biomass components are key indicators for assessing forest ecosystem health, productivity, and carbon stocks. Light Detection and Ranging (LiDAR) technology has great advantages in acquiring the vertical structure of forests and the spatial distribution chara...
Autores principales: | Ma, Jiamin, Zhang, Wangfei, Ji, Yongjie, Huang, Jimao, Huang, Guoran, Wang, Lu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639141/ https://www.ncbi.nlm.nih.gov/pubmed/37954998 http://dx.doi.org/10.3389/fpls.2023.1258521 |
Ejemplares similares
-
Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR
por: Garcia, Mariano, et al.
Publicado: (2017) -
Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China
por: Jiang, Fugen, et al.
Publicado: (2022) -
Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data
por: Hernández-Stefanoni, J. Luis, et al.
Publicado: (2020) -
Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico
por: Ortiz-Reyes, Alma D., et al.
Publicado: (2021) -
Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico
por: Urbazaev, Mikhail, et al.
Publicado: (2018)