Cargando…
TT3D: Leveraging precomputed protein 3D sequence models to predict protein–protein interactions
MOTIVATION: High-quality computational structural models are now precomputed and available for nearly every protein in UniProt. However, the best way to leverage these models to predict which pairs of proteins interact in a high-throughput manner is not immediately clear. The recent Foldseek method...
Autores principales: | Sledzieski, Samuel, Devkota, Kapil, Singh, Rohit, Cowen, Lenore, Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640393/ https://www.ncbi.nlm.nih.gov/pubmed/37897686 http://dx.doi.org/10.1093/bioinformatics/btad663 |
Ejemplares similares
-
Topsy-Turvy: integrating a global view into sequence-based PPI prediction
por: Singh, Rohit, et al.
Publicado: (2022) -
Contrastive learning in protein language space predicts interactions between drugs and protein targets
por: Singh, Rohit, et al.
Publicado: (2023) -
Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank
por: Prlić, Andreas, et al.
Publicado: (2016) -
TALAIA: a 3D visual dictionary for protein structures
por: Alemany-Chavarria, Mercè, et al.
Publicado: (2023) -
BioJava-ModFinder: identification of protein modifications in 3D structures from the Protein Data Bank
por: Gao, Jianjiong, et al.
Publicado: (2017)