Cargando…
Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics
MOTIVATION: The recent development of spatially resolved transcriptomics (SRT) technologies has facilitated research on gene expression in the spatial context. Annotating cell types is one crucial step for downstream analysis. However, many existing algorithms use an unsupervised strategy to assign...
Autores principales: | Zhong, Cheng, Tian, Tian, Wei, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640398/ https://www.ncbi.nlm.nih.gov/pubmed/37944045 http://dx.doi.org/10.1093/bioinformatics/btad641 |
Ejemplares similares
-
Approximating Hidden Gaussian Markov Random Fields
por: Rue, H, et al.
Publicado: (2003) -
FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus
por: Prestat, Emmanuel, et al.
Publicado: (2014) -
Gaussian Markov Random Field Models With Applications in Spatial Statistics
por: Rue, H, et al.
Publicado: (2003) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Hidden Markov Modeling with HMMTeacher
por: Fuentes-Beals, Camilo, et al.
Publicado: (2022)