Cargando…
Deep Learning-Based Automatic Diagnosis of Keratoconus with Corneal Endothelium Image
INTRODUCTION: The primary objective of this study was to develop an end-to-end model that can accurately identify corneal endothelial cells and diagnose keratoconus based on corneal endothelial images acquired from a non-contact specular microscope. METHODS: This was a retrospective case–control stu...
Autores principales: | Wan, Qi, Wei, Ran, Ma, Ke, Yin, Hongbo, Deng, Ying-ping, Tang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640564/ https://www.ncbi.nlm.nih.gov/pubmed/37665500 http://dx.doi.org/10.1007/s40123-023-00795-w |
Ejemplares similares
-
Herpetic Keratitis Following Corneal Crosslinking for Keratoconus: A Case Series
por: Wang, Lixiang, et al.
Publicado: (2022) -
Keratoconus Screening Based on Deep Learning Approach of Corneal Topography
por: Kuo, Bo-I, et al.
Publicado: (2020) -
Corneal endothelium after deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus: A four-year comparative study
por: Kubaloglu, Anil, et al.
Publicado: (2012) -
Predicting Keratoconus Progression and Need for Corneal Crosslinking Using Deep Learning
por: Kato, Naoko, et al.
Publicado: (2021) -
The application of corneal biomechanical interocular asymmetry for the diagnosis of keratoconus and subclinical keratoconus
por: Dong, Ruilan, et al.
Publicado: (2023)