Cargando…
Predicting OCT biological marker localization from weak annotations
Recent developments in deep learning have shown success in accurately predicting the location of biological markers in Optical Coherence Tomography (OCT) volumes of patients with Age-Related Macular Degeneration (AMD) and Diabetic Retinopathy (DR). We propose a method that automatically locates biol...
Autores principales: | Tejero, Javier Gamazo, Neila, Pablo Márquez, Kurmann, Thomas, Gallardo, Mathias, Zinkernagel, Martin, Wolf, Sebastian, Sznitman, Raphael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640596/ https://www.ncbi.nlm.nih.gov/pubmed/37952011 http://dx.doi.org/10.1038/s41598-023-47019-6 |
Ejemplares similares
-
Assessment of patient specific information in the wild on fundus photography and optical coherence tomography
por: Munk, Marion R., et al.
Publicado: (2021) -
Mask then classify: multi-instance segmentation for surgical instruments
por: Kurmann, Thomas, et al.
Publicado: (2021) -
Expert-level Automated Biomarker Identification in Optical Coherence Tomography Scans
por: Kurmann, Thomas, et al.
Publicado: (2019) -
Unsupervised out-of-distribution detection for safer robotically guided retinal microsurgery
por: Jungo, Alain, et al.
Publicado: (2023) -
Automatically Enhanced OCT Scans of the Retina: A proof of concept study
por: Apostolopoulos, Stefanos, et al.
Publicado: (2020)