Cargando…
Data-driven discovery of electrocatalysts for CO(2) reduction using active motifs-based machine learning
The electrochemical carbon dioxide reduction reaction (CO(2)RR) is an attractive approach for mitigating CO(2) emissions and generating value-added products. Consequently, discovery of promising CO(2)RR catalysts has become a crucial task, and machine learning (ML) has been utilized to accelerate ca...
Autores principales: | Mok, Dong Hyeon, Li, Hong, Zhang, Guiru, Lee, Chaehyeon, Jiang, Kun, Back, Seoin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640609/ https://www.ncbi.nlm.nih.gov/pubmed/37952012 http://dx.doi.org/10.1038/s41467-023-43118-0 |
Ejemplares similares
-
Active learning with non-ab initio input features toward efficient CO(2) reduction catalysts
por: Noh, Juhwan, et al.
Publicado: (2018) -
Machine learning-driven new material discovery
por: Cai, Jiazhen, et al.
Publicado: (2020) -
Noble metal supported hexagonal boron nitride for the oxygen reduction reaction: a DFT study
por: Back, Seoin, et al.
Publicado: (2018) -
Correction: Noble metal supported hexagonal boron nitride for the oxygen reduction reaction: a DFT study
por: Back, Seoin, et al.
Publicado: (2018) -
Machine learning methods and systems for data-driven discovery in biomedical informatics
por: Yoon, Sungroh, et al.
Publicado: (2017)