Cargando…
Molecular docking analysis of Omt-A protein model from Aspergillus flavus with synthetic compounds
Aflatoxin is a potent mycotoxin of Aspergillus flavus that has been classified as a Group I carcinogen. O-methyltransferase A (Omt-A) is a critical enzyme in the formation of aflatoxin. It catalyzes the methylation of norsalic acid to form the highly toxic intermediate averantin. The ligand-protein...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640793/ https://www.ncbi.nlm.nih.gov/pubmed/37969662 http://dx.doi.org/10.6026/97320630019990 |
Sumario: | Aflatoxin is a potent mycotoxin of Aspergillus flavus that has been classified as a Group I carcinogen. O-methyltransferase A (Omt-A) is a critical enzyme in the formation of aflatoxin. It catalyzes the methylation of norsalic acid to form the highly toxic intermediate averantin. The ligand-protein interaction of Omt-A was performed with piperlonguminin and blasticidins. The maximum affinity of -10.6 was found for the 5ICC_A piperlonguminine at site1 (X,Y,Z: -15.282, 21.785, 5.672). Compounds such as Blasticidin S, Neoeriocitrin, Blasticidin S - hydrochloric acid, 6,6''-Bigenkwanin, Pipernomaline, and Eriodictyol were found to have binding features to protein residues, as shown by computational interaction at the molecular level. |
---|