Cargando…
Using machine learning algorithms to predict 28-day mortality in critically ill elderly patients with colorectal cancer
OBJECTIVE: To predict the 28-day mortality of critically ill, elderly patients with colorectal cancer (CRC) using five machine learning approaches. METHODS: Data were extracted from the eICU Collaborative Research Database (eICU-CRD) (version 2.0) for a training cohort and from the Medical Informati...
Autores principales: | Guo, Chunxia, Pan, Jun, Tian, Shan, Gao, Yuanjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640810/ https://www.ncbi.nlm.nih.gov/pubmed/37950672 http://dx.doi.org/10.1177/03000605231198725 |
Ejemplares similares
-
Risk factors for mortality in postoperative peritonitis in critically ill patients
por: Launey, Yoann, et al.
Publicado: (2017) -
Prediction model of stress ulcer after laparoscopic surgery for colorectal cancer established by machine learning algorithm
por: Yu, Dong-Mei, et al.
Publicado: (2023) -
High 28-day mortality in critically ill patients with sepsis and concomitant active cancer
por: Wang, Yong-gang, et al.
Publicado: (2018) -
Albumin–Globulin Ratio Is an Independent Determinant of 28-Day Mortality in Patients with Critical Illness
por: Liu, Bin, et al.
Publicado: (2021) -
Brainstem response patterns in deeply-sedated critically-ill patients predict 28-day mortality
por: Rohaut, Benjamin, et al.
Publicado: (2017)