Cargando…
Targeting high performance of perovskite solar cells by combining electronic, manufacturing and environmental features in machine learning techniques
This study employs Machine Learning (ML) techniques to optimize the performance of Perovskite Solar Cells (PSCs) by identifying the ideal materials and properties for high Power Conversion Efficiency (PCE). Utilizing a dataset of 3000 PSC samples from previous experiments, the Random Forest (RF) tec...
Autores principales: | Mammeri, M., Dehimi, L., Bencherif, H., Amami, Mongi, Ezzine, Safa, Pandey, Rahul, Hossain, M. Khalid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641223/ https://www.ncbi.nlm.nih.gov/pubmed/37964826 http://dx.doi.org/10.1016/j.heliyon.2023.e21498 |
Ejemplares similares
-
Lead-free novel perovskite Ba(3)AsI(3): First-principles insights into its electrical, optical, and mechanical properties
por: Barman, Pobitra, et al.
Publicado: (2023) -
Harnessing the potential of CsPbBr(3)-based perovskite solar cells using efficient charge transport materials and global optimization
por: Hossain, M. Khalid, et al.
Publicado: (2023) -
Comparative study of distinct halide composites for highly efficient perovskite solar cells using a SCAPS-1D simulator
por: Bhattarai, Sagar, et al.
Publicado: (2023) -
Achieving above 24% efficiency with non-toxic CsSnI(3) perovskite solar cells by harnessing the potential of the absorber and charge transport layers
por: Hossain, M. Khalid, et al.
Publicado: (2023) -
Inorganic novel cubic halide perovskite Sr(3)AsI(3): Strain-activated electronic and optical properties
por: Ghosh, Avijit, et al.
Publicado: (2023)