Cargando…

Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1–RAB3GAP2...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiss, Robert S., Chicoine, Jarred, Khalil, Youssef, Sladek, Robert, Chen, He, Pisaturo, Alessandro, Martin, Cyril, Dale, Jessica D., Brudenell, Tegan A., Kamath, Archith, Kyei-Boahen, Jeffrey, Hafiane, Anouar, Daliah, Girija, Alecki, Célia, Hopes, Tayah S., Heier, Martin, Aligianis, Irene A., Lebrun, Jean-Jacques, Aspden, Julie, Paci, Emanuele, Kerksiek, Anja, Lütjohann, Dieter, Clayton, Peter, Wills, Jimi C., von Kriegsheim, Alex, Nilsson, Tommy, Sheridan, Eamonn, Handley, Mark T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641524/
https://www.ncbi.nlm.nih.gov/pubmed/37774976
http://dx.doi.org/10.1016/j.jbc.2023.105295
_version_ 1785146787291463680
author Kiss, Robert S.
Chicoine, Jarred
Khalil, Youssef
Sladek, Robert
Chen, He
Pisaturo, Alessandro
Martin, Cyril
Dale, Jessica D.
Brudenell, Tegan A.
Kamath, Archith
Kyei-Boahen, Jeffrey
Hafiane, Anouar
Daliah, Girija
Alecki, Célia
Hopes, Tayah S.
Heier, Martin
Aligianis, Irene A.
Lebrun, Jean-Jacques
Aspden, Julie
Paci, Emanuele
Kerksiek, Anja
Lütjohann, Dieter
Clayton, Peter
Wills, Jimi C.
von Kriegsheim, Alex
Nilsson, Tommy
Sheridan, Eamonn
Handley, Mark T.
author_facet Kiss, Robert S.
Chicoine, Jarred
Khalil, Youssef
Sladek, Robert
Chen, He
Pisaturo, Alessandro
Martin, Cyril
Dale, Jessica D.
Brudenell, Tegan A.
Kamath, Archith
Kyei-Boahen, Jeffrey
Hafiane, Anouar
Daliah, Girija
Alecki, Célia
Hopes, Tayah S.
Heier, Martin
Aligianis, Irene A.
Lebrun, Jean-Jacques
Aspden, Julie
Paci, Emanuele
Kerksiek, Anja
Lütjohann, Dieter
Clayton, Peter
Wills, Jimi C.
von Kriegsheim, Alex
Nilsson, Tommy
Sheridan, Eamonn
Handley, Mark T.
author_sort Kiss, Robert S.
collection PubMed
description Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1–RAB3GAP2 RAB18–guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor–dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.
format Online
Article
Text
id pubmed-10641524
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-106415242023-11-14 Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis Kiss, Robert S. Chicoine, Jarred Khalil, Youssef Sladek, Robert Chen, He Pisaturo, Alessandro Martin, Cyril Dale, Jessica D. Brudenell, Tegan A. Kamath, Archith Kyei-Boahen, Jeffrey Hafiane, Anouar Daliah, Girija Alecki, Célia Hopes, Tayah S. Heier, Martin Aligianis, Irene A. Lebrun, Jean-Jacques Aspden, Julie Paci, Emanuele Kerksiek, Anja Lütjohann, Dieter Clayton, Peter Wills, Jimi C. von Kriegsheim, Alex Nilsson, Tommy Sheridan, Eamonn Handley, Mark T. J Biol Chem Research Article Collection: Molecular Bases of Disease Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1–RAB3GAP2 RAB18–guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor–dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder. American Society for Biochemistry and Molecular Biology 2023-09-28 /pmc/articles/PMC10641524/ /pubmed/37774976 http://dx.doi.org/10.1016/j.jbc.2023.105295 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article Collection: Molecular Bases of Disease
Kiss, Robert S.
Chicoine, Jarred
Khalil, Youssef
Sladek, Robert
Chen, He
Pisaturo, Alessandro
Martin, Cyril
Dale, Jessica D.
Brudenell, Tegan A.
Kamath, Archith
Kyei-Boahen, Jeffrey
Hafiane, Anouar
Daliah, Girija
Alecki, Célia
Hopes, Tayah S.
Heier, Martin
Aligianis, Irene A.
Lebrun, Jean-Jacques
Aspden, Julie
Paci, Emanuele
Kerksiek, Anja
Lütjohann, Dieter
Clayton, Peter
Wills, Jimi C.
von Kriegsheim, Alex
Nilsson, Tommy
Sheridan, Eamonn
Handley, Mark T.
Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
title Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
title_full Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
title_fullStr Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
title_full_unstemmed Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
title_short Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
title_sort comparative proximity biotinylation implicates the small gtpase rab18 in sterol mobilization and biosynthesis
topic Research Article Collection: Molecular Bases of Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641524/
https://www.ncbi.nlm.nih.gov/pubmed/37774976
http://dx.doi.org/10.1016/j.jbc.2023.105295
work_keys_str_mv AT kissroberts comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT chicoinejarred comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT khalilyoussef comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT sladekrobert comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT chenhe comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT pisaturoalessandro comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT martincyril comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT dalejessicad comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT brudenelltegana comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT kamatharchith comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT kyeiboahenjeffrey comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT hafianeanouar comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT daliahgirija comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT aleckicelia comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT hopestayahs comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT heiermartin comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT aligianisirenea comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT lebrunjeanjacques comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT aspdenjulie comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT paciemanuele comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT kerksiekanja comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT lutjohanndieter comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT claytonpeter comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT willsjimic comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT vonkriegsheimalex comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT nilssontommy comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT sheridaneamonn comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis
AT handleymarkt comparativeproximitybiotinylationimplicatesthesmallgtpaserab18insterolmobilizationandbiosynthesis