Cargando…
Screening of reliable reference genes for the normalization of RT-qPCR in chicken gastrointestinal tract
The application of reverse transcription quantitative real-time PCR technology for the production of gene tissue expression profiles is a widely employed approach in molecular biology research. It is imperative to ascertain internal reference genes that exhibit stable expression across diverse tissu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641542/ https://www.ncbi.nlm.nih.gov/pubmed/37918133 http://dx.doi.org/10.1016/j.psj.2023.103169 |
Sumario: | The application of reverse transcription quantitative real-time PCR technology for the production of gene tissue expression profiles is a widely employed approach in molecular biology research. It is imperative to ascertain internal reference genes that exhibit stable expression across diverse tissues to ensure the precision of tissue gene expression profiles. While there have been studies documenting the most suitable reference genes for various tissues in chickens, there is a dearth of research on the identification of reference genes in the gastrointestinal (GI) tract of chickens. This study utilized 4 different algorithms (Delta CT, BestKeeper, NormFinder, and Genorm) to assess the stability of 19 internal reference genes in various GI tract tissues, including individual GI tract tissues, the anterior and posterior GI tract, and the entire GI tissue. The RefFinder software was employed to comprehensively rank these genes. The research findings successfully identified the most appropriate internal reference genes for each type of GI tissue. Furthermore, TBP, DNAJC24, Polr2b, RPL13, andAp2m exhibited stable expression in the entire and posterior GI tract, whereas HMBS, TBP, Ap2m, GUSB, DNAJC24, and RPL13 demonstrated stable expression in the anterior GI tract. However, the internal reference genes commonly utilized, namely β-Actin, 18s RNA, and ALB, exhibit poor stability and are not advised for future investigations concerning gene expression in the GI region. Consequently, MUC2 and CDX1, 2 genes that specifically express in the gut, were chosen for examination to ascertain the stability of the aforementioned internal reference genes in this particular study. In summary, this study presents a relatively stable set of internal reference genes that can be employed to enhance the precision of quantifying mRNA expression levels in functional genes within the chicken GI tract. |
---|