Cargando…
Sen-2 LULC: Land use land cover dataset for deep learning approaches
Land Use Land Cover (LULC) classification is pivotal to sustainable environment and natural resource management. It is critical in planning, monitoring, and management programs at various local and national levels. Monitoring changes in LULC patterns over time is crucial for understanding evolving l...
Autores principales: | Sawant, Suraj, Garg, Rahul Dev, Meshram, Vishal, Mistry, Shrayank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641585/ https://www.ncbi.nlm.nih.gov/pubmed/37965594 http://dx.doi.org/10.1016/j.dib.2023.109724 |
Ejemplares similares
-
Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning
por: Benhammou, Yassir, et al.
Publicado: (2022) -
The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia
por: Kidane, Moges, et al.
Publicado: (2019) -
Land use and land cover (LULC) performance modeling using machine learning algorithms: a case study of the city of Melbourne, Australia
por: Aryal, Jagannath, et al.
Publicado: (2023) -
A global dataset of crowdsourced land cover and land use reference data
por: Fritz, Steffen, et al.
Publicado: (2017) -
CatLC: Catalonia Multiresolution Land Cover Dataset
por: García, Carlos, et al.
Publicado: (2022)