Cargando…
Pushing boundaries in 3D printing: Economic pressure filament extruder for producing polymeric and polymer-ceramic filaments for 3D printers
3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-cera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641689/ https://www.ncbi.nlm.nih.gov/pubmed/37964896 http://dx.doi.org/10.1016/j.ohx.2023.e00486 |
Sumario: | 3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-ceramic filaments involves using costly filament extruders and significantly consuming expensive medical-grade materials. Commercial extruders frequently require a large amount of raw material for experimental purposes, even for small quantities of filament. In our publication, we propose a simple system for pressure filament extruding, which allows obtaining up to 1-meter-long filament suitable for fused filament fabrication-type 3D printers, requiring only 30 g of material to begin work. Our device is based on stainless steel pipes used as a container for material, a basic electric heating system with a proportional–integral–derivative controller, and a pressurised air source with an air pressure regulator. We tested our device on various mixes of polylactide and polycaprolactone with β-tricalcium phosphate and demonstrated the possibility of screening production and testing of new materials for 3D-printed bone implants. |
---|