Cargando…
3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies
BACKGROUND AND PURPOSE: Deep learning algorithms for segmentation of multiple sclerosis (MS) plaques generally require training on large datasets. This manuscript evaluates the effect of transfer learning from segmentation of another pathology to facilitate use of smaller MS-specific training datase...
Autores principales: | Wahlig, Stephen G., Nedelec, Pierre, Weiss, David A., Rudie, Jeffrey D., Sugrue, Leo P., Rauschecker, Andreas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641790/ https://www.ncbi.nlm.nih.gov/pubmed/37965219 http://dx.doi.org/10.3389/fnins.2023.1188336 |
Ejemplares similares
-
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021) -
Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network
por: Rudie, Jeffrey D., et al.
Publicado: (2019) -
New multiple sclerosis lesion segmentation and detection using pre-activation U-Net
por: Ashtari, Pooya, et al.
Publicado: (2022) -
Automated identification of multinucleated germ cells with U-Net
por: Bell, Samuel, et al.
Publicado: (2020) -
A U-Net Based Approach for Automating Tribological Experiments
por: Staar, Benjamin, et al.
Publicado: (2020)