Cargando…
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
BACKGROUND: Computational methods of predicting protein stability changes upon missense mutations are invaluable tools in high-throughput studies involving a large number of protein variants. However, they are limited by a wide variation in accuracy and difficulty of assessing prediction uncertainty...
Autores principales: | Sapozhnikov, Yesol, Patel, Jagdish Suresh, Ytreberg, F. Marty, Miller, Craig R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642056/ https://www.ncbi.nlm.nih.gov/pubmed/37953256 http://dx.doi.org/10.1186/s12859-023-05537-0 |
Ejemplares similares
-
The FoldX web server: an online force field
por: Schymkowitz, Joost, et al.
Publicado: (2005) -
FoldX as Protein Engineering Tool: Better Than Random Based Approaches?
por: Buß, Oliver, et al.
Publicado: (2018) -
FoldX 5.0: working with RNA, small molecules and a new graphical interface
por: Delgado, Javier, et al.
Publicado: (2019) -
Genome-Wide Prediction of SH2 Domain Targets Using Structural Information and the FoldX Algorithm
por: Sánchez, Ignacio E., et al.
Publicado: (2008) -
FoldX accurate structural protein–DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1)
por: Blanco, Javier Delgado, et al.
Publicado: (2018)