Cargando…
Computer-aided Diagnosis of Polyp Classification Using Scale Invariant Features and Extreme Gradient Boosting
AIMS: Analysis of colonoscopy images is an important diagnostic procedure in the identification of colorectal cancer. It has been observed that owing to advancements in technology, numerous machine-learning models now excel in the analysis of colorectal polyps classification. This work focused on de...
Autor principal: | Don, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642600/ https://www.ncbi.nlm.nih.gov/pubmed/37969147 http://dx.doi.org/10.4103/jmp.jmp_29_23 |
Ejemplares similares
-
Computer Aided Classification of Neuroblastoma Histological Images Using Scale Invariant Feature Transform with Feature Encoding
por: Gheisari, Soheila, et al.
Publicado: (2018) -
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
por: Nishio, Mizuho, et al.
Publicado: (2018) -
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
por: Bakasa, Wilson, et al.
Publicado: (2023) -
A Novel Computer-Aided Detection/Diagnosis System for Detection and Classification of Polyps in Colonoscopy
por: Tang, Chia-Pei, et al.
Publicado: (2023) -
XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set
por: Sikander, Rahu, et al.
Publicado: (2022)