Cargando…

Fungal drops: a novel approach for macro- and microscopic analyses of fungal mycelial growth

This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The ‘fungal drops’ method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is create...

Descripción completa

Detalles Bibliográficos
Autores principales: Buffi, Matteo, Cailleau, Guillaume, Kuhn, Thierry, Li Richter, Xiang-Yi, Stanley, Claire E, Wick, Lukas Y, Chain, Patrick S, Bindschedler, Saskia, Junier, Pilar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642649/
https://www.ncbi.nlm.nih.gov/pubmed/37965130
http://dx.doi.org/10.1093/femsml/uqad042
Descripción
Sumario:This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The ‘fungal drops’ method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is created by depositing 15–20 µl drops on a hydrophobic surface at a fixed distance. This system is akin to a two-dimensional (2D) soil-like structure in which aqueous-pockets are intermixed with air-filled pores. The fungus (spores or mycelia) is inoculated into one of the drops, from which hyphal growth and exploration take place. Hyphal structures are assessed at different scales using stereoscopic and microscopic imaging. The former allows to evaluate the local response of regions within the colony (modular behaviour), while the latter can be used for fractal dimension analyses to describe the hyphal network architecture. The method was tested with several species to underpin the transferability to multiple species. In addition, two sets of experiments were carried out to demonstrate its use in fungal biology. First, mycelial reorganization of Fusarium oxysporum was assessed as a response to patches containing different nutrient concentrations. Second, the effect of interactions with the soil bacterium Pseudomonas putida on habitat colonization by the same fungus was assessed. This method appeared as fast and accessible, allowed for a high level of replication, and complements more complex experimental platforms. Coupled with image analysis, the fungal drops method provides new insights into the study of fungal modularity both macroscopically and at a single-hypha level.