Cargando…

TP53 gene implications in prostate cancer evolution: potential role in tumor classification

BACKGROUND AND AIMS: Prostate adenocarcinoma (PRAD) is a complex disease that can be driven by alterations in both coding and noncoding genes. Recent research has identified coding and non-coding genes that are considered to play important roles in prostate cancer evolution and which may be used as...

Descripción completa

Detalles Bibliográficos
Autores principales: Schitcu, Vlad Horia, Raduly, Lajos, Zanoaga, Oana, Jurj, Ancuta, Munteanu, Vlad Cristian, Budisan, Liviuta, Petrut, Bogdan, Braicu, Cornelia, Coman, Ioan, Berindan-Neagoe, Ioana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Iuliu Hatieganu University of Medicine and Pharmacy 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642740/
https://www.ncbi.nlm.nih.gov/pubmed/37970196
http://dx.doi.org/10.15386/mpr-2639
Descripción
Sumario:BACKGROUND AND AIMS: Prostate adenocarcinoma (PRAD) is a complex disease that can be driven by alterations in both coding and noncoding genes. Recent research has identified coding and non-coding genes that are considered to play important roles in prostate cancer evolution and which may be used as biomarkers for disease diagnosis, prognosis, and treatment. TP53 is a critical hub gene in prostate cancer. Advanced studies have demonstrated the crosstalk between coding and non-coding RNAs, particularly microRNAs (miRNAs). METHODS: In this study, we investigated the roundabout of TP53 and their regulatory miRNAs (miR-15a-5p, miR-34a-5p, and miR-141-3p) based on the TCGA data set. We validated an additional patient cohort of 28 matched samples of patients with PRAD at tissue and plasma level. RESULTS: Therefore, using the UALCAN online database, we evaluated the expression level in PRAD of these genes revealing overexpression of TP53. qRT-PCR validation step endorsed the expression level for these genes. Additionally, we evaluated the expression level of the four key miRNAs (miR-15a-5p, miR-34a-5p, and miR-141-3p) interconnected as a network at tissue and plasma levels. CONCLUSIONS: Through these results, we demonstrated the essential function of TP53 and its associated miRNAs that play a significant role in tumor control, highlighting miRNAs’ potential as future therapeutic targets and biomarkers with important implications in managing prostate cancer.