Cargando…
Combining formal methods and Bayesian approach for inferring discrete-state stochastic models from steady-state data
Stochastic population models are widely used to model phenomena in different areas such as cyber-physical systems, chemical kinetics, collective animal behaviour, and beyond. Quantitative analysis of stochastic population models easily becomes challenging due to the combinatorial number of possible...
Autores principales: | Klein, Julia, Phung, Huy, Hajnal, Matej, Šafránek, David, Petrov, Tatjana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642793/ https://www.ncbi.nlm.nih.gov/pubmed/37956126 http://dx.doi.org/10.1371/journal.pone.0291151 |
Ejemplares similares
-
Extracting individual characteristics from population data reveals a negative social effect during honeybee defence
por: Petrov, Tatjana, et al.
Publicado: (2022) -
Inferring gene regulation from stochastic transcriptional variation across single cells at steady state
por: Gupta, Anika, et al.
Publicado: (2022) -
Bayesian inference for stochastic processes
por: Broemeling, Lyle D
Publicado: (2017) -
Statistical Inference for Discrete Time Stochastic Processes
por: Rajarshi, M B
Publicado: (2013) -
Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density
por: Wu, Qianqian, et al.
Publicado: (2014)