Cargando…
Evaluation of a Natural Language Processing Model to Identify and Characterize Patients in the United States With High-Risk Non–Muscle-Invasive Bladder Cancer
PURPOSE: Treatment of non–muscle-invasive bladder cancer (NMIBC) is guided by risk stratification using clinical and pathologic criteria. This study aimed to develop a natural language processing (NLP) model for identifying patients with high-risk NMIBC retrospectively from unstructured electronic m...
Autores principales: | Narayan, Vikram M., Siolas, Despina, Meadows, Eric S., Turzhitsky, Vladimir, Sillah, Arthur, Imai, Kentaro, McMurry, Andrew J., Li, Haojie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642898/ https://www.ncbi.nlm.nih.gov/pubmed/37906722 http://dx.doi.org/10.1200/CCI.23.00096 |
Ejemplares similares
-
The natural history of secondary muscle-invasive bladder cancer
por: Hidas, Guy, et al.
Publicado: (2013) -
Intravesical gemcitabine for non-muscle invasive bladder cancer: An abridged Cochrane Review
por: Han, Mi Ah, et al.
Publicado: (2021) -
Development of a natural language processing algorithm to detect chronic cough in electronic health records
por: Bali, Vishal, et al.
Publicado: (2022) -
Neoadjuvant Immunotherapy for Muscle-Invasive Bladder Cancer
por: Peyrottes, Arthur, et al.
Publicado: (2021) -
Química orgánica
por: McMurry, John