Cargando…
Zhilong Huoxue Tongyu capsule inhibits rabbit model of hyperlipidemia and atherosclerosis through NF-κB/NLRP3 signaling pathway
OBJECTIVE: Zhilong Huoxue Tongyu capsule (ZL) is a Chinese patent medicine for treating cardio-cerebral diseases. However, the pharmacological mechanism by which it regulates blood lipids and treats atherosclerosis (AS) is unclear. Therefore, the purpose of this study is to explore the mechanism of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643091/ https://www.ncbi.nlm.nih.gov/pubmed/38027979 http://dx.doi.org/10.1016/j.heliyon.2023.e20026 |
Sumario: | OBJECTIVE: Zhilong Huoxue Tongyu capsule (ZL) is a Chinese patent medicine for treating cardio-cerebral diseases. However, the pharmacological mechanism by which it regulates blood lipids and treats atherosclerosis (AS) is unclear. Therefore, the purpose of this study is to explore the mechanism of ZL inhibiting hyperlipidemia and treating AS through NF-κB/NLRP3 signaling pathway. METHODS: Fifty New Zealand white rabbits were divided into control, model, model + ZL (3.12 g/kg/d, i.g.), model + atorvastatin (0.51 mg/kg/d, i.g.), and model + ZL + atorvastatin groups. Except for the control group, all other groups underwent carotid intima air drying and received a high-fat diet for 28 days to establish hyperlipidemia AS model, and drug treatment was given for the same period of time after modeling. Pathological changes and blood lipids were detected, NF-κB/NLRP3-related protein or gene expression levels were analyzed in carotid tissue. RESULTS: ZL significantly reduced blood lipids and delayed the progression of AS. TC, TG, and LDL-C were decreased while HDL-C was increased in blood, IMT thickening and plaque formation of carotid arteries were inhibited, VRI was alleviated, and pathological features were improved. NF-κB, NLRP3 and IL-1β in the carotid artery were significantly down-regulated after intervention with ZL. RT-PCR and western blot analysis showed that NF-κB (p-NF-κB), NLRP3, caspase-1, IL-1β and IL-18 were significantly downregulated by ZL. CONCLUSIONS: ZL can be used effectively as adjuvant therapy for hyperlipidemia and AS, combining it with atorvastatin yielded more optimized efficacy, but its anti-inflammatory and pharmacological mechanisms of inhibiting pyroptosis should be studied further. |
---|