Cargando…
Demaghi, a polyherbal formulation, mitigates aluminum chloride-induced neurological impairment in mice: Insights from phytochemical analysis and behavioral assessment
Herbal products have been very popular in Pakistan for their curative significance against various disorders. Demaghi (DEMG) is a widely used herbal product claimed to own natural substances having neuroprotective potential. The current study aims to scientifically validate the chemical composition...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643107/ https://www.ncbi.nlm.nih.gov/pubmed/38027790 http://dx.doi.org/10.1016/j.heliyon.2023.e21234 |
Sumario: | Herbal products have been very popular in Pakistan for their curative significance against various disorders. Demaghi (DEMG) is a widely used herbal product claimed to own natural substances having neuroprotective potential. The current study aims to scientifically validate the chemical composition as well as its neuroprotective claims of this widely used herbal tonic. The commercially available Demaghi product was chemically characterized for its phytocomposition. The mice were treated with two doses of Demaghi (DEMG 50 mg and 100 mg/kg/day), and the effects of its prolonged exposure on animal anxiety, memory, and depression were noted through a series of behavioral tests in the AlCl(3)-induced memory deficient mice model. Besides that, dissected brains were biochemically analyzed for oxidative stress markers and acetylcholinesterase activity, as well as histopathological changes. The study outcomes showed that DEMG (100 mg/kg/day) has prominent anti-anxiety effects, memory-enhancing properties, and anti-depressants effects observed in the AlCl(3)-induced memory-deficient mice model. Biochemical assays also showed a greater decrease in oxidative stress of tested animals treated with 100 mg/kg/day of DEMG. The histopathological analysis also revealed that administration of DEMG reduced the AlCl(3)-induced toxicity. UPLC-MS results revealed the presence of many phytoconstituents, which showed to support cholinergic signaling in in-silico studies. The current research validates the neurological benefits of Demaghi for memory-boosting properties. The phytocompounds present in Demaghi exert neuroprotective effects, possibly by enhancing the cholinergic neurotransmission and combating the neurotoxin-induced oxidative stress. |
---|