Cargando…

Conformational coupling of redox-driven Na(+)-translocation in Vibrio cholerae NADH:quinone oxidoreductase

In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na(+)-NQR) generates a sodium gradient by a so far unknown mechanism. Here we s...

Descripción completa

Detalles Bibliográficos
Autores principales: Hau, Jann-Louis, Kaltwasser, Susann, Muras, Valentin, Casutt, Marco S., Vohl, Georg, Claußen, Björn, Steffen, Wojtek, Leitner, Alexander, Bill, Eckhard, Cutsail, George E., DeBeer, Serena, Vonck, Janet, Steuber, Julia, Fritz, Günter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643135/
https://www.ncbi.nlm.nih.gov/pubmed/37710014
http://dx.doi.org/10.1038/s41594-023-01099-0
Descripción
Sumario:In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na(+)-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na(+)-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na(+)-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na(+)-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na(+) from a binding site localized in subunit NqrB.