Cargando…

The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter

Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive s...

Descripción completa

Detalles Bibliográficos
Autores principales: Mirón, Gonzalo Díaz, Semelak, Jonathan A., Grisanti, Luca, Rodriguez, Alex, Conti, Irene, Stella, Martina, Velusamy, Jayaramakrishnan, Seriani, Nicola, Došlić, Nadja, Rivalta, Ivan, Garavelli, Marco, Estrin, Dario A., Kaminski Schierle, Gabriele S., González Lebrero, Mariano C., Hassanali, Ali, Morzan, Uriel N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643446/
https://www.ncbi.nlm.nih.gov/pubmed/37957206
http://dx.doi.org/10.1038/s41467-023-42874-3
_version_ 1785147117337051136
author Mirón, Gonzalo Díaz
Semelak, Jonathan A.
Grisanti, Luca
Rodriguez, Alex
Conti, Irene
Stella, Martina
Velusamy, Jayaramakrishnan
Seriani, Nicola
Došlić, Nadja
Rivalta, Ivan
Garavelli, Marco
Estrin, Dario A.
Kaminski Schierle, Gabriele S.
González Lebrero, Mariano C.
Hassanali, Ali
Morzan, Uriel N.
author_facet Mirón, Gonzalo Díaz
Semelak, Jonathan A.
Grisanti, Luca
Rodriguez, Alex
Conti, Irene
Stella, Martina
Velusamy, Jayaramakrishnan
Seriani, Nicola
Došlić, Nadja
Rivalta, Ivan
Garavelli, Marco
Estrin, Dario A.
Kaminski Schierle, Gabriele S.
González Lebrero, Mariano C.
Hassanali, Ali
Morzan, Uriel N.
author_sort Mirón, Gonzalo Díaz
collection PubMed
description Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics.
format Online
Article
Text
id pubmed-10643446
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106434462023-11-13 The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter Mirón, Gonzalo Díaz Semelak, Jonathan A. Grisanti, Luca Rodriguez, Alex Conti, Irene Stella, Martina Velusamy, Jayaramakrishnan Seriani, Nicola Došlić, Nadja Rivalta, Ivan Garavelli, Marco Estrin, Dario A. Kaminski Schierle, Gabriele S. González Lebrero, Mariano C. Hassanali, Ali Morzan, Uriel N. Nat Commun Article Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics. Nature Publishing Group UK 2023-11-13 /pmc/articles/PMC10643446/ /pubmed/37957206 http://dx.doi.org/10.1038/s41467-023-42874-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mirón, Gonzalo Díaz
Semelak, Jonathan A.
Grisanti, Luca
Rodriguez, Alex
Conti, Irene
Stella, Martina
Velusamy, Jayaramakrishnan
Seriani, Nicola
Došlić, Nadja
Rivalta, Ivan
Garavelli, Marco
Estrin, Dario A.
Kaminski Schierle, Gabriele S.
González Lebrero, Mariano C.
Hassanali, Ali
Morzan, Uriel N.
The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_full The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_fullStr The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_full_unstemmed The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_short The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_sort carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643446/
https://www.ncbi.nlm.nih.gov/pubmed/37957206
http://dx.doi.org/10.1038/s41467-023-42874-3
work_keys_str_mv AT mirongonzalodiaz thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT semelakjonathana thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT grisantiluca thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT rodriguezalex thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT contiirene thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT stellamartina thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT velusamyjayaramakrishnan thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT serianinicola thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT doslicnadja thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT rivaltaivan thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT garavellimarco thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT estrindarioa thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT kaminskischierlegabrieles thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT gonzalezlebreromarianoc thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT hassanaliali thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT morzanurieln thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT mirongonzalodiaz carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT semelakjonathana carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT grisantiluca carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT rodriguezalex carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT contiirene carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT stellamartina carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT velusamyjayaramakrishnan carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT serianinicola carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT doslicnadja carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT rivaltaivan carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT garavellimarco carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT estrindarioa carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT kaminskischierlegabrieles carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT gonzalezlebreromarianoc carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT hassanaliali carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT morzanurieln carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter