Cargando…
The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive s...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643446/ https://www.ncbi.nlm.nih.gov/pubmed/37957206 http://dx.doi.org/10.1038/s41467-023-42874-3 |
_version_ | 1785147117337051136 |
---|---|
author | Mirón, Gonzalo Díaz Semelak, Jonathan A. Grisanti, Luca Rodriguez, Alex Conti, Irene Stella, Martina Velusamy, Jayaramakrishnan Seriani, Nicola Došlić, Nadja Rivalta, Ivan Garavelli, Marco Estrin, Dario A. Kaminski Schierle, Gabriele S. González Lebrero, Mariano C. Hassanali, Ali Morzan, Uriel N. |
author_facet | Mirón, Gonzalo Díaz Semelak, Jonathan A. Grisanti, Luca Rodriguez, Alex Conti, Irene Stella, Martina Velusamy, Jayaramakrishnan Seriani, Nicola Došlić, Nadja Rivalta, Ivan Garavelli, Marco Estrin, Dario A. Kaminski Schierle, Gabriele S. González Lebrero, Mariano C. Hassanali, Ali Morzan, Uriel N. |
author_sort | Mirón, Gonzalo Díaz |
collection | PubMed |
description | Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics. |
format | Online Article Text |
id | pubmed-10643446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106434462023-11-13 The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter Mirón, Gonzalo Díaz Semelak, Jonathan A. Grisanti, Luca Rodriguez, Alex Conti, Irene Stella, Martina Velusamy, Jayaramakrishnan Seriani, Nicola Došlić, Nadja Rivalta, Ivan Garavelli, Marco Estrin, Dario A. Kaminski Schierle, Gabriele S. González Lebrero, Mariano C. Hassanali, Ali Morzan, Uriel N. Nat Commun Article Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics. Nature Publishing Group UK 2023-11-13 /pmc/articles/PMC10643446/ /pubmed/37957206 http://dx.doi.org/10.1038/s41467-023-42874-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mirón, Gonzalo Díaz Semelak, Jonathan A. Grisanti, Luca Rodriguez, Alex Conti, Irene Stella, Martina Velusamy, Jayaramakrishnan Seriani, Nicola Došlić, Nadja Rivalta, Ivan Garavelli, Marco Estrin, Dario A. Kaminski Schierle, Gabriele S. González Lebrero, Mariano C. Hassanali, Ali Morzan, Uriel N. The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
title | The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
title_full | The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
title_fullStr | The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
title_full_unstemmed | The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
title_short | The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
title_sort | carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643446/ https://www.ncbi.nlm.nih.gov/pubmed/37957206 http://dx.doi.org/10.1038/s41467-023-42874-3 |
work_keys_str_mv | AT mirongonzalodiaz thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT semelakjonathana thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT grisantiluca thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT rodriguezalex thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT contiirene thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT stellamartina thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT velusamyjayaramakrishnan thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT serianinicola thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT doslicnadja thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT rivaltaivan thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT garavellimarco thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT estrindarioa thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT kaminskischierlegabrieles thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT gonzalezlebreromarianoc thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT hassanaliali thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT morzanurieln thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT mirongonzalodiaz carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT semelakjonathana carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT grisantiluca carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT rodriguezalex carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT contiirene carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT stellamartina carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT velusamyjayaramakrishnan carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT serianinicola carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT doslicnadja carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT rivaltaivan carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT garavellimarco carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT estrindarioa carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT kaminskischierlegabrieles carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT gonzalezlebreromarianoc carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT hassanaliali carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter AT morzanurieln carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter |