Cargando…

Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field

Understanding the behavior of nanodroplets converted into microbubbles with applied ultrasound is an important problem in tumor therapeutical and diagnostic applications. In this study, a comprehensive model is proposed to investigate the vaporization process and the direct growth threshold of the n...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Kangyi, Li, Xinyue, Huang, Anqi, Wan, Mingxi, Zong, Yujin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643523/
https://www.ncbi.nlm.nih.gov/pubmed/37922720
http://dx.doi.org/10.1016/j.ultsonch.2023.106665
_version_ 1785134366530207744
author Feng, Kangyi
Li, Xinyue
Huang, Anqi
Wan, Mingxi
Zong, Yujin
author_facet Feng, Kangyi
Li, Xinyue
Huang, Anqi
Wan, Mingxi
Zong, Yujin
author_sort Feng, Kangyi
collection PubMed
description Understanding the behavior of nanodroplets converted into microbubbles with applied ultrasound is an important problem in tumor therapeutical and diagnostic applications. In this study, a comprehensive model is proposed to investigate the vaporization process and the direct growth threshold of the nanodroplet by following the vapor bubble growth, especially attention devoted to the effect of tissue viscoelasticity and adjacent phase-changed microbubbles (PCMBs). It is shown that the ultrasonic energy must be sufficiently strong to counterbalance the natural condensation of the vapor bubble and the tissue stiffness-inhibitory effect. The softer tissue with a lower shear modulus favors the vaporization process, and the nanodroplet has a lower direct growth threshold in the softer tissue. Moreover, the adjacent PCMBs show a suppression effect on the vaporization process due to the negative value of the secondary Bjerknes force, implying an attractive force, preventing the nanodroplet from escaping from the constraint of the adjacent PCMBs. However, according to the linear scattering theory, the attractive force signifies that the constraint is weak, causing the direct growth threshold to increase in the range of 0.09–0.24 MPa. The weak increase in threshold demonstrates that the direct growth threshold is relatively unaffected by the adjacent PCMBs. The prediction results of our model are in good agreement with the experiment results obtained by the echo enhancement method, in which the threshold is relatively independent of the intermediate concentration. The findings presented here provide physical insight that will be further helpful in understanding the complex behavior of the nanodroplet responses to ultrasound in practical medical applications.
format Online
Article
Text
id pubmed-10643523
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106435232023-10-29 Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field Feng, Kangyi Li, Xinyue Huang, Anqi Wan, Mingxi Zong, Yujin Ultrason Sonochem Original Research Article Understanding the behavior of nanodroplets converted into microbubbles with applied ultrasound is an important problem in tumor therapeutical and diagnostic applications. In this study, a comprehensive model is proposed to investigate the vaporization process and the direct growth threshold of the nanodroplet by following the vapor bubble growth, especially attention devoted to the effect of tissue viscoelasticity and adjacent phase-changed microbubbles (PCMBs). It is shown that the ultrasonic energy must be sufficiently strong to counterbalance the natural condensation of the vapor bubble and the tissue stiffness-inhibitory effect. The softer tissue with a lower shear modulus favors the vaporization process, and the nanodroplet has a lower direct growth threshold in the softer tissue. Moreover, the adjacent PCMBs show a suppression effect on the vaporization process due to the negative value of the secondary Bjerknes force, implying an attractive force, preventing the nanodroplet from escaping from the constraint of the adjacent PCMBs. However, according to the linear scattering theory, the attractive force signifies that the constraint is weak, causing the direct growth threshold to increase in the range of 0.09–0.24 MPa. The weak increase in threshold demonstrates that the direct growth threshold is relatively unaffected by the adjacent PCMBs. The prediction results of our model are in good agreement with the experiment results obtained by the echo enhancement method, in which the threshold is relatively independent of the intermediate concentration. The findings presented here provide physical insight that will be further helpful in understanding the complex behavior of the nanodroplet responses to ultrasound in practical medical applications. Elsevier 2023-10-29 /pmc/articles/PMC10643523/ /pubmed/37922720 http://dx.doi.org/10.1016/j.ultsonch.2023.106665 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Feng, Kangyi
Li, Xinyue
Huang, Anqi
Wan, Mingxi
Zong, Yujin
Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
title Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
title_full Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
title_fullStr Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
title_full_unstemmed Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
title_short Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
title_sort effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643523/
https://www.ncbi.nlm.nih.gov/pubmed/37922720
http://dx.doi.org/10.1016/j.ultsonch.2023.106665
work_keys_str_mv AT fengkangyi effectoftissueviscoelasticityandadjacentphasechangedmicrobubblesonvaporizationprocessanddirectgrowththresholdofnanodropletinanultrasonicfield
AT lixinyue effectoftissueviscoelasticityandadjacentphasechangedmicrobubblesonvaporizationprocessanddirectgrowththresholdofnanodropletinanultrasonicfield
AT huanganqi effectoftissueviscoelasticityandadjacentphasechangedmicrobubblesonvaporizationprocessanddirectgrowththresholdofnanodropletinanultrasonicfield
AT wanmingxi effectoftissueviscoelasticityandadjacentphasechangedmicrobubblesonvaporizationprocessanddirectgrowththresholdofnanodropletinanultrasonicfield
AT zongyujin effectoftissueviscoelasticityandadjacentphasechangedmicrobubblesonvaporizationprocessanddirectgrowththresholdofnanodropletinanultrasonicfield