Cargando…
The development and validation of pathological sections based U-Net deep learning segmentation model for the detection of esophageal mucosa and squamous cell neoplasm
BACKGROUND: Deep learning methods have demonstrated great potential for processing high-resolution images. The U-Net model, in particular, has shown proficiency in the segmentation of biomedical images. However, limited research has examined the application of deep learning to esophageal squamous ce...
Autores principales: | Su, Feng, Zhang, Wei, Liu, Yunzhong, Chen, Shanglin, Lin, Miao, Feng, Mingxiang, Yin, Jun, Tan, Lijie, Shen, Yaxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643591/ https://www.ncbi.nlm.nih.gov/pubmed/37969831 http://dx.doi.org/10.21037/jgo-23-587 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model
por: Sudhan, M. B., et al.
Publicado: (2022) -
Segmentation of roots in soil with U-Net
por: Smith, Abraham George, et al.
Publicado: (2020) -
Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation
por: Lee, Ming-Chan, et al.
Publicado: (2023) -
A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation
por: Kugelman, Jason, et al.
Publicado: (2022)