Cargando…
Utilizing deep learning via the 3D U-net neural network for the delineation of brain stroke lesions in MRI image
The segmentation of acute stroke lesions plays a vital role in healthcare by assisting doctors in making prompt and well-informed treatment choices. Although Magnetic Resonance Imaging (MRI) is a time-intensive procedure, it produces high-fidelity images widely regarded as the most reliable diagnost...
Autores principales: | Soleimani, Parisa, Farezi, Navid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643611/ https://www.ncbi.nlm.nih.gov/pubmed/37957203 http://dx.doi.org/10.1038/s41598-023-47107-7 |
Ejemplares similares
-
Automated delineation of stroke lesions using brain CT images
por: Gillebert, Céline R., et al.
Publicado: (2014) -
Vessel Delineation Using U-Net: A Sparse Labeled Deep Learning Approach for Semantic Segmentation of Histological Images
por: Glänzer, Lukas, et al.
Publicado: (2023) -
Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model
por: Bousselham, Abdelmajid, et al.
Publicado: (2022) -
Dual-Path Attention Compensation U-Net for Stroke Lesion Segmentation
por: Hui, Haisheng, et al.
Publicado: (2021) -
Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies
por: Hitziger, Sebastian, et al.
Publicado: (2022)