Cargando…

Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation

Molecular homeostats play essential roles across all levels of biological organization to ensure a return to normal function after responding to abnormal internal and environmental events. SKN-1 is an evolutionarily conserved cytoprotective transcription factor that is integral for the maintenance o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos, Carmen M., Curran, Sean P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643742/
https://www.ncbi.nlm.nih.gov/pubmed/37751046
http://dx.doi.org/10.1007/s11357-023-00937-9
Descripción
Sumario:Molecular homeostats play essential roles across all levels of biological organization to ensure a return to normal function after responding to abnormal internal and environmental events. SKN-1 is an evolutionarily conserved cytoprotective transcription factor that is integral for the maintenance of cellular homeostasis upon exposure to a variety of stress conditions. Despite the essentiality of turning on SKN-1/NRF2 in response to exogenous and endogenous stress, animals with chronic activation of SKN-1 display premature loss of health with age, and ultimately, diminished lifespan. Previous genetic models of constitutive SKN-1 activation include gain-of-function alleles of skn-1 and loss-of-function alleles of wdr-23 that impede the turnover of SKN-1 by the ubiquitin proteasome. Here, we define a novel gain-of-function mutation in the xrep-4 locus that results in constitutive activation of SKN-1 in the absence of stress. Although each of these genetic mutations results in continuously unregulated transcriptional output from SKN-1, the physiological consequences of each model on development, stress resistance, reproduction, lipid homeostasis, and lifespan are distinct. Here, we provide a comprehensive assessment of the differential healthspan impacts across multiple models of constitutive SKN-1 activation. Although our results reveal the universal need to reign in the uncontrolled activity of cytoprotective transcription factors, we also define the unique signatures of each model of constitutive SKN-1 activation, which provides innovative solutions for the design of molecular “off-switches” of unregulated transcriptional homeostats. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11357-023-00937-9.