Cargando…
Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification
BACKGROUND: Osteoarthritis (OA) is a global healthcare problem. The increasing population of OA patients demands a greater bandwidth of imaging and diagnostics. It is important to provide automatic and objective diagnostic techniques to address this challenge. This study demonstrates the utility of...
Autores principales: | Zhong, Junru, Yao, Yongcheng, Cahill, Dόnal G., Xiao, Fan, Li, Siyue, Lee, Jack, Ho, Kevin Ki-Wai, Ong, Michael Tim-Yun, Griffith, James F., Chen, Weitian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644135/ https://www.ncbi.nlm.nih.gov/pubmed/37969620 http://dx.doi.org/10.21037/qims-23-704 |
Ejemplares similares
-
Randomized control trial of mesenchymal stem cells versus hyaluronic acid in patients with knee osteoarthritis – A Hong Kong pilot study
por: Ho, Kevin Ki-wai, et al.
Publicado: (2022) -
Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification
por: Juan-Albarracín, Javier, et al.
Publicado: (2015) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019) -
Measuring adherence to unsupervised, conservative treatment for knee osteoarthritis: A systematic review
por: Duong, Vicky, et al.
Publicado: (2021) -
Molecular Classification of Knee Osteoarthritis
por: Lv, Zhongyang, et al.
Publicado: (2021)