Cargando…

The role of iodinated contrast media in computed tomography structured Reporting and Data Systems (RADS): a narrative review

BACKGROUND AND OBJECTIVE: In recent years, there has been a large-scale dissemination of guidelines in radiology in the form of Reporting & Data Systems (RADS). The use of iodinated contrast media (ICM) has a fundamental role in enhancing the diagnostic capabilities of computed tomography (CT) b...

Descripción completa

Detalles Bibliográficos
Autores principales: Parillo, Marco, van der Molen, Aart J., Asbach, Patrick, Elsholtz, Fabian Henry Jürgen, Laghi, Andrea, Ronot, Maxime, Wu, Jim S., Mallio, Carlo Augusto, Quattrocchi, Carlo Cosimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644138/
https://www.ncbi.nlm.nih.gov/pubmed/37969632
http://dx.doi.org/10.21037/qims-23-603
Descripción
Sumario:BACKGROUND AND OBJECTIVE: In recent years, there has been a large-scale dissemination of guidelines in radiology in the form of Reporting & Data Systems (RADS). The use of iodinated contrast media (ICM) has a fundamental role in enhancing the diagnostic capabilities of computed tomography (CT) but poses certain risks. The scope of the present review is to summarize the current role of ICM only in clinical reporting guidelines for CT that have adopted the “RADS” approach, focusing on three specific questions per each RADS: (I) what is the scope of the scoring system; (II) how is ICM used in the scoring system; (III) what is the impact of ICM enhancement on the scoring. METHODS: We analyzed the original articles for each of the latest versions of RADS that can be used in CT [PubMed articles between January, 2005 and March, 2023 in English and American College of Radiology (ACR) official website]. KEY CONTENT AND FINDINGS: We found 14 RADS suitable for use in CT out of 28 RADS described in the literature. Four RADS were validated by the ACR: Colonography-RADS (C-RADS), Liver Imaging-RADS (LI-RADS), Lung CT Screening-RADS (Lung-RADS), and Neck Imaging-RADS (NI-RADS). One RADS was validated by the ACR in collaboration with other cardiovascular scientific societies: Coronary Artery Disease-RADS 2.0 (CAD-RADS). Nine RADS were proposed by other scientific groups: Bone Tumor Imaging-RADS (BTI-RADS), Bone‑RADS, Coronary Artery Calcium Data & Reporting System (CAC-DRS), Coronavirus Disease 2019 Imaging-RADS (COVID-RADS), COVID-19-RADS (CO-RADS), Interstitial Lung Fibrosis Imaging-RADS (ILF-RADS), Lung-RADS (LU-RADS), Node-RADS, and Viral Pneumonia Imaging-RADS (VP-RADS). CONCLUSIONS: This overview suggests that ICM is not strictly necessary for the study of bones and calcifications (CAC-DRS, BTI-RADS, Bone-RADS), lung parenchyma (Lung-RADS, LU-RADS, COVID-RADS, CO-RADS, VP-RADS and ILF-RADS), and in CT colonography (C-RADS). On the other hand, ICM plays a key role in CT angiography (CAD-RADS), in the study of liver parenchyma (LI-RADS), and in the evaluation of soft tissues and lymph nodes (NI-RADS, Node-RADS). Future studies are needed in order to evaluate the impact of the new iodinated and non-iodinate contrast media, artificial intelligence tools and dual energy CT in the assignment of RADS scores.