Cargando…

Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study

BACKGROUND: Functional limitations are associated with poor clinical outcomes, higher mortality, and disability rates, especially in older adults. Continuous assessment of patients’ functionality is important for clinical practice; however, traditional questionnaire-based assessment methods are very...

Descripción completa

Detalles Bibliográficos
Autores principales: Sükei, Emese, Romero-Medrano, Lorena, de Leon-Martinez, Santiago, Herrera López, Jesús, Campaña-Montes, Juan José, Olmos, Pablo M, Baca-Garcia, Enrique, Artés, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644188/
https://www.ncbi.nlm.nih.gov/pubmed/37902823
http://dx.doi.org/10.2196/47167
_version_ 1785134499882860544
author Sükei, Emese
Romero-Medrano, Lorena
de Leon-Martinez, Santiago
Herrera López, Jesús
Campaña-Montes, Juan José
Olmos, Pablo M
Baca-Garcia, Enrique
Artés, Antonio
author_facet Sükei, Emese
Romero-Medrano, Lorena
de Leon-Martinez, Santiago
Herrera López, Jesús
Campaña-Montes, Juan José
Olmos, Pablo M
Baca-Garcia, Enrique
Artés, Antonio
author_sort Sükei, Emese
collection PubMed
description BACKGROUND: Functional limitations are associated with poor clinical outcomes, higher mortality, and disability rates, especially in older adults. Continuous assessment of patients’ functionality is important for clinical practice; however, traditional questionnaire-based assessment methods are very time-consuming and infrequently used. Mobile sensing offers a great range of sources that can assess function and disability daily. OBJECTIVE: This work aims to prove the feasibility of an interpretable machine learning pipeline for predicting function and disability based on the World Health Organization Disability Assessment Schedule (WHODAS) 2.0 outcomes of clinical outpatients, using passively collected digital biomarkers. METHODS: One-month-long behavioral time-series data consisting of physical and digital activity descriptor variables were summarized using statistical measures (minimum, maximum, mean, median, SD, and IQR), creating 64 features that were used for prediction. We then applied a sequential feature selection to each WHODAS 2.0 domain (cognition, mobility, self-care, getting along, life activities, and participation) in order to find the most descriptive features for each domain. Finally, we predicted the WHODAS 2.0 functional domain scores using linear regression using the best feature subsets. We reported the mean absolute errors and the mean absolute percentage errors over 4 folds as goodness-of-fit statistics to evaluate the model and allow for between-domain performance comparison. RESULTS: Our machine learning–based models for predicting patients’ WHODAS functionality scores per domain achieved an average (across the 6 domains) mean absolute percentage error of 19.5%, varying between 14.86% (self-care domain) and 27.21% (life activities domain). We found that 5-19 features were sufficient for each domain, and the most relevant being the distance traveled, time spent at home, time spent walking, exercise time, and vehicle time. CONCLUSIONS: Our findings show the feasibility of using machine learning–based methods to assess functional health solely from passively sensed mobile data. The feature selection step provides a set of interpretable features for each domain, ensuring better explainability to the models’ decisions—an important aspect in clinical practice.
format Online
Article
Text
id pubmed-10644188
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-106441882023-10-30 Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study Sükei, Emese Romero-Medrano, Lorena de Leon-Martinez, Santiago Herrera López, Jesús Campaña-Montes, Juan José Olmos, Pablo M Baca-Garcia, Enrique Artés, Antonio JMIR Form Res Original Paper BACKGROUND: Functional limitations are associated with poor clinical outcomes, higher mortality, and disability rates, especially in older adults. Continuous assessment of patients’ functionality is important for clinical practice; however, traditional questionnaire-based assessment methods are very time-consuming and infrequently used. Mobile sensing offers a great range of sources that can assess function and disability daily. OBJECTIVE: This work aims to prove the feasibility of an interpretable machine learning pipeline for predicting function and disability based on the World Health Organization Disability Assessment Schedule (WHODAS) 2.0 outcomes of clinical outpatients, using passively collected digital biomarkers. METHODS: One-month-long behavioral time-series data consisting of physical and digital activity descriptor variables were summarized using statistical measures (minimum, maximum, mean, median, SD, and IQR), creating 64 features that were used for prediction. We then applied a sequential feature selection to each WHODAS 2.0 domain (cognition, mobility, self-care, getting along, life activities, and participation) in order to find the most descriptive features for each domain. Finally, we predicted the WHODAS 2.0 functional domain scores using linear regression using the best feature subsets. We reported the mean absolute errors and the mean absolute percentage errors over 4 folds as goodness-of-fit statistics to evaluate the model and allow for between-domain performance comparison. RESULTS: Our machine learning–based models for predicting patients’ WHODAS functionality scores per domain achieved an average (across the 6 domains) mean absolute percentage error of 19.5%, varying between 14.86% (self-care domain) and 27.21% (life activities domain). We found that 5-19 features were sufficient for each domain, and the most relevant being the distance traveled, time spent at home, time spent walking, exercise time, and vehicle time. CONCLUSIONS: Our findings show the feasibility of using machine learning–based methods to assess functional health solely from passively sensed mobile data. The feature selection step provides a set of interpretable features for each domain, ensuring better explainability to the models’ decisions—an important aspect in clinical practice. JMIR Publications 2023-10-30 /pmc/articles/PMC10644188/ /pubmed/37902823 http://dx.doi.org/10.2196/47167 Text en ©Emese Sükei, Lorena Romero-Medrano, Santiago de Leon-Martinez, Jesús Herrera López, Juan José Campaña-Montes, Pablo M Olmos, Enrique Baca-Garcia, Antonio Artés. Originally published in JMIR Formative Research (https://formative.jmir.org), 30.10.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
spellingShingle Original Paper
Sükei, Emese
Romero-Medrano, Lorena
de Leon-Martinez, Santiago
Herrera López, Jesús
Campaña-Montes, Juan José
Olmos, Pablo M
Baca-Garcia, Enrique
Artés, Antonio
Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
title Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
title_full Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
title_fullStr Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
title_full_unstemmed Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
title_short Continuous Assessment of Function and Disability via Mobile Sensing: Real-World Data-Driven Feasibility Study
title_sort continuous assessment of function and disability via mobile sensing: real-world data-driven feasibility study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644188/
https://www.ncbi.nlm.nih.gov/pubmed/37902823
http://dx.doi.org/10.2196/47167
work_keys_str_mv AT sukeiemese continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT romeromedranolorena continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT deleonmartinezsantiago continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT herreralopezjesus continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT campanamontesjuanjose continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT olmospablom continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT bacagarciaenrique continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy
AT artesantonio continuousassessmentoffunctionanddisabilityviamobilesensingrealworlddatadrivenfeasibilitystudy