Cargando…
Architectural Design of a Blockchain-Enabled, Federated Learning Platform for Algorithmic Fairness in Predictive Health Care: Design Science Study
BACKGROUND: Developing effective and generalizable predictive models is critical for disease prediction and clinical decision-making, often requiring diverse samples to mitigate population bias and address algorithmic fairness. However, a major challenge is to retrieve learning models across multipl...
Autores principales: | Liang, Xueping, Zhao, Juan, Chen, Yan, Bandara, Eranga, Shetty, Sachin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644196/ https://www.ncbi.nlm.nih.gov/pubmed/37902833 http://dx.doi.org/10.2196/46547 |
Ejemplares similares
-
A blockchain empowered and privacy preserving digital contact tracing platform
por: Bandara, Eranga, et al.
Publicado: (2021) -
Blockchain-Enabled Asynchronous Federated Learning in Edge Computing
por: Liu, Yinghui, et al.
Publicado: (2021) -
Blockchain-Based Federated Learning System: A Survey on Design Choices
por: Oktian, Yustus Eko, et al.
Publicado: (2023) -
Fair compute loads enabled by blockchain: sharing models by alternating client and server roles
por: Kuo, Tsung-Ting, et al.
Publicado: (2019) -
Enforcing Fairness in Blockchain Transaction Ordering
por: Orda, Ariel, et al.
Publicado: (2021)