Cargando…
Diversification and deleterious role of microbiome in gastric cancer
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644335/ https://www.ncbi.nlm.nih.gov/pubmed/37530125 http://dx.doi.org/10.1002/cnr2.1878 |
_version_ | 1785147217111154688 |
---|---|
author | Chattopadhyay, Indranil Gundamaraju, Rohit Rajeev, Ashwin |
author_facet | Chattopadhyay, Indranil Gundamaraju, Rohit Rajeev, Ashwin |
author_sort | Chattopadhyay, Indranil |
collection | PubMed |
description | Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin‐associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria‐host interactions and bacteria‐induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer. |
format | Online Article Text |
id | pubmed-10644335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106443352023-11-15 Diversification and deleterious role of microbiome in gastric cancer Chattopadhyay, Indranil Gundamaraju, Rohit Rajeev, Ashwin Cancer Rep (Hoboken) Reviews Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin‐associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria‐host interactions and bacteria‐induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer. John Wiley and Sons Inc. 2023-08-02 /pmc/articles/PMC10644335/ /pubmed/37530125 http://dx.doi.org/10.1002/cnr2.1878 Text en © 2023 The Authors. Cancer Reports published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Chattopadhyay, Indranil Gundamaraju, Rohit Rajeev, Ashwin Diversification and deleterious role of microbiome in gastric cancer |
title | Diversification and deleterious role of microbiome in gastric cancer |
title_full | Diversification and deleterious role of microbiome in gastric cancer |
title_fullStr | Diversification and deleterious role of microbiome in gastric cancer |
title_full_unstemmed | Diversification and deleterious role of microbiome in gastric cancer |
title_short | Diversification and deleterious role of microbiome in gastric cancer |
title_sort | diversification and deleterious role of microbiome in gastric cancer |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644335/ https://www.ncbi.nlm.nih.gov/pubmed/37530125 http://dx.doi.org/10.1002/cnr2.1878 |
work_keys_str_mv | AT chattopadhyayindranil diversificationanddeleteriousroleofmicrobiomeingastriccancer AT gundamarajurohit diversificationanddeleteriousroleofmicrobiomeingastriccancer AT rajeevashwin diversificationanddeleteriousroleofmicrobiomeingastriccancer |