Cargando…

The role of increased post-impact ball speed on plantar pressure during topspin and slice longline forehand groundstrokes in female tennis players

OBJECTIVE: Performing groundstrokes is a fundamental skill for tennis players. However, little is known about changes in plantar pressure when post-impact ball speed is increased during topspin and slice groundstrokes. The objective of the present study was to examine how elite (International Tennis...

Descripción completa

Detalles Bibliográficos
Autores principales: Lambrich, Johanna, Muehlbauer, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644409/
https://www.ncbi.nlm.nih.gov/pubmed/37957744
http://dx.doi.org/10.1186/s13104-023-06614-6
Descripción
Sumario:OBJECTIVE: Performing groundstrokes is a fundamental skill for tennis players. However, little is known about changes in plantar pressure when post-impact ball speed is increased during topspin and slice groundstrokes. The objective of the present study was to examine how elite (International Tennis Number ≤ 2) female tennis players (N = 15, mean age: 22.7 ± 7.8 years) change their plantar pressure in the dominant (equals the stroke arm) and non-dominant foot when executing topspin and slice longline forehand groundstrokes in order to increase post-impact ball speed (i.e., 80 km/h, 90 km/h, 100 km/h, v(max)). RESULTS: The repeated measures analysis of variance revealed a significant ball speed × foot dominance interaction. Post-hoc analyses showed larger mean forces during topspin compared to slice groundstrokes for the dominant foot (p ≤ .026, d ≥ 0.34) but lower values for the non-dominant foot (p ≤ .050, d ≥ 0.28). Further, with increasing post-impact ball speed, increases in mean forces in both feet during topspin could be observed but only in the dominant foot during slice groundstrokes. Varying mean forces depending on the stroke type and foot dominance imply that specific physical exercises related to these two factors are necessary to optimise plantar pressure distribution.