Cargando…
Machine learning classification of polycystic ovary syndrome based on radial pulse wave analysis
BACKGROUND: Patients with Polycystic ovary syndrome (PCOS) experienced endocrine disorders that may present vascular function changes. This study aimed to classify and predict PCOS by radial pulse wave parameters using machine learning (ML) methods and to provide evidence for objectifying pulse diag...
Autores principales: | Lim, Jiekee, Li, Jieyun, Feng, Xiao, Feng, Lu, Xia, Yumo, Xiao, Xinang, Wang, Yiqin, Xu, Zhaoxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644435/ https://www.ncbi.nlm.nih.gov/pubmed/37957660 http://dx.doi.org/10.1186/s12906-023-04249-5 |
Ejemplares similares
-
Machine Learning–Based Signal Quality Evaluation of Single-Period Radial Artery Pulse Waves: Model Development and Validation
por: Ding, Xiaodong, et al.
Publicado: (2020) -
A Study of Machine-Learning Classifiers for Hypertension Based on Radial Pulse Wave
por: Luo, Zhi-yu, et al.
Publicado: (2018) -
Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms
por: Jin, Weiwei, et al.
Publicado: (2021) -
Characteristics of Pulse Parameters in Patients with Polycystic Ovary Syndrome Varied at Different Body Mass Index Levels
por: Feng, Xiao, et al.
Publicado: (2022) -
The Association of Radial Artery Pulse Wave Variables with the Pulse Wave Velocity and Echocardiographic Parameters in Hypertension
por: Qiao, Li-jie, et al.
Publicado: (2018)