Cargando…
IGFBP2 drives epithelial-mesenchymal transition in hepatocellular carcinoma via activating the Wnt/β-catenin pathway
Metastasis has emerged as a major impediment to achieve successful therapeutic outcomes in hepatocellular carcinoma (HCC). Nonetheless, the intricate molecular mechanisms governing the progression of HCC remain elusive. Herein, we present evidence highlighting the influence exerted by insulin-like g...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644524/ https://www.ncbi.nlm.nih.gov/pubmed/37957694 http://dx.doi.org/10.1186/s13027-023-00543-6 |
Sumario: | Metastasis has emerged as a major impediment to achieve successful therapeutic outcomes in hepatocellular carcinoma (HCC). Nonetheless, the intricate molecular mechanisms governing the progression of HCC remain elusive. Herein, we present evidence highlighting the influence exerted by insulin-like growth factor-binding protein 2 (IGFBP2) as a potent oncogene driving the malignant phenotype. Our investigation reveals a marked elevation of IGFBP2 expression in primary tumors, concomitant with the presence of mesenchymal biomarkers in HCC. Through in vitro and in vivo experimentation, we demonstrate that the overexpression of IGFBP2 expedites the progression of epithelial-mesenchymal transition (EMT) and facilitates the metastatic potential of HCC cells, chiefly mediated by the Wnt/β-catenin signaling pathway. Notably, knockdown of IGFBP2 significantly decreased the expression of total and nuclear β-catenin, N-cadherin and vimentin in the treatment of the specific activator of Wnt/β-catenin CHIR-99021. Collectively, our findings identify IGFBP2 as a pivotal regulator within the HCC EMT axis, whereby its overexpression confers the distinctly aggressive clinical features characteristic of the disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13027-023-00543-6. |
---|