Cargando…
Intervening in hnRNPA2B1-mediated exosomal transfer of tumor-suppressive miR-184-3p for tumor microenvironment regulation and cancer therapy
BACKGROUND: Despite being a common malignant tumor, the molecular mechanism underlying the initiation and progression of triple-negative breast cancers (TNBCs) remain unclear. Tumor-associated macrophages (TAMs) are often polarized into a pro-tumor phenotype and are associated with a poor prognosis...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644646/ https://www.ncbi.nlm.nih.gov/pubmed/37957722 http://dx.doi.org/10.1186/s12951-023-02190-w |
Sumario: | BACKGROUND: Despite being a common malignant tumor, the molecular mechanism underlying the initiation and progression of triple-negative breast cancers (TNBCs) remain unclear. Tumor-associated macrophages (TAMs) are often polarized into a pro-tumor phenotype and are associated with a poor prognosis of TNBCs. Exosomes, important mediators of cell-cell communication, can be actively secreted by donor cells to reprogram recipient cells. The functions and molecular mechanisms of tumor cell-derived exosomes in TNBCs progression and TAMs reprogramming urgently need to be further explored. RESULTS: We demonstrated that tumor cell-derived exosomes enriched with miR-184-3p were taken up by macrophages to inhibit JNK signaling pathway by targeting EGR1, thereby inducing M2 polarization of macrophages and synergistically promoting tumor progression. Nanoparticles loaded with oncogene c-Myc inhibitor JQ1 could suppress the polarization process by reducing Rac1-related exosome uptake by macrophage. More importantly, it was found for the first time that tumor-suppressive miR-184-3p was actively sorted into exosomes by binding to RNA-binding protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), thus facilitating tumor cell proliferation and metastasis by relieving the inhibitory effect of miR-184-3p on Mastermind-like 1 (MAML1). Overexpressing miR-184-3p in tumor cells and simultaneously knocking down hnRNPA2B1 to block its secretion through exosomes could effectively inhibit tumor growth and metastasis. CONCLUSIONS: Our study revealed that hnRNPA2B1-mediated exosomal transfer of tumor-suppressive miR-184-3p from breast cancer cells to macrophages was an important mediator of TNBCs progression, providing new insights into TNBCs pathogenesis and therapeutic strategies. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-02190-w. |
---|