Cargando…
Deep learning distinguishes connectomes from focal epilepsy patients and controls: feasibility and clinical implications
The application of deep learning models to evaluate connectome data is gaining interest in epilepsy research. Deep learning may be a useful initial tool to partition connectome data into network subsets for further analysis. Few prior works have used deep learning to examine structural connectomes f...
Autores principales: | Maher, Christina, Tang, Zihao, D’Souza, Arkiev, Cabezas, Mariano, Cai, Weidong, Barnett, Michael, Kavehei, Omid, Wang, Chenyu, Nikpour, Armin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644981/ https://www.ncbi.nlm.nih.gov/pubmed/38025275 http://dx.doi.org/10.1093/braincomms/fcad294 |
Ejemplares similares
-
White matter alterations in focal to bilateral tonic-clonic seizures
por: Maher, Christina, et al.
Publicado: (2022) -
High angular diffusion tensor imaging estimation from minimal evenly distributed diffusion gradient directions
por: Tang, Zihao, et al.
Publicado: (2023) -
Seizure Susceptibility Prediction in Uncontrolled Epilepsy
por: Truong, Nhan Duy, et al.
Publicado: (2021) -
Seizure detection with reduced electroencephalogram channels: research trends and outlook
por: Maher, Christina, et al.
Publicado: (2023) -
Weak self-supervised learning for seizure forecasting: a feasibility study
por: Yang, Yikai, et al.
Publicado: (2022)