Cargando…
Predicting Duodenal Cancer Risk in Patients with Familial Adenomatous Polyposis Using Machine Learning Model
BACKGROUND/AIMS: The aim of this study was to both classify data of familial adenomatous polyposis patients with and without duodenal cancer and to identify important genes that may be related to duodenal cancer by XGboost model. MATERIALS AND METHODS: The current study was performed using expressio...
Autores principales: | Akbulut, Sami, Küçükakçalı, Zeynep, Çolak, Cemil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Turkish Society of Gastroenterology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645292/ https://www.ncbi.nlm.nih.gov/pubmed/37565794 http://dx.doi.org/10.5152/tjg.2023.22346 |
Ejemplares similares
-
Value of fecal calprotectin in prediction of acute appendicitis based on a proposed model of machine learning
por: Küçükakçali, Zeynep, et al.
Publicado: (2023) -
Machine Learning-based Prediction of HBV-related Hepatocellular Carcinoma and Detection of Key Candidate Biomarkers
por: KUCUKAKCALI, Zeynep, et al.
Publicado: (2022) -
Artificial intelligence-based prediction of molecular and genetic markers for hepatitis C–related hepatocellular carcinoma
por: Colak, Cemil, et al.
Publicado: (2023) -
Multiple Adenomatous Duodenal Polyposis
por: Zádorová, Zdena, et al.
Publicado: (2013) -
A Support Vector Machine Model Predicting the Risk of Duodenal Cancer in Patients with Familial Adenomatous Polyposis at the Transcript Levels
por: Liu, Weiqing, et al.
Publicado: (2020)