Cargando…
A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645363/ https://www.ncbi.nlm.nih.gov/pubmed/37917660 http://dx.doi.org/10.1371/journal.pcbi.1011557 |
_version_ | 1785134737829920768 |
---|---|
author | Patruno, Lucrezia Milite, Salvatore Bergamin, Riccardo Calonaci, Nicola D’Onofrio, Alberto Anselmi, Fabio Antoniotti, Marco Graudenzi, Alex Caravagna, Giulio |
author_facet | Patruno, Lucrezia Milite, Salvatore Bergamin, Riccardo Calonaci, Nicola D’Onofrio, Alberto Anselmi, Fabio Antoniotti, Marco Graudenzi, Alex Caravagna, Giulio |
author_sort | Patruno, Lucrezia |
collection | PubMed |
description | Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability. |
format | Online Article Text |
id | pubmed-10645363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106453632023-11-02 A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing Patruno, Lucrezia Milite, Salvatore Bergamin, Riccardo Calonaci, Nicola D’Onofrio, Alberto Anselmi, Fabio Antoniotti, Marco Graudenzi, Alex Caravagna, Giulio PLoS Comput Biol Research Article Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability. Public Library of Science 2023-11-02 /pmc/articles/PMC10645363/ /pubmed/37917660 http://dx.doi.org/10.1371/journal.pcbi.1011557 Text en © 2023 Patruno et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Patruno, Lucrezia Milite, Salvatore Bergamin, Riccardo Calonaci, Nicola D’Onofrio, Alberto Anselmi, Fabio Antoniotti, Marco Graudenzi, Alex Caravagna, Giulio A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing |
title | A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing |
title_full | A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing |
title_fullStr | A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing |
title_full_unstemmed | A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing |
title_short | A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing |
title_sort | bayesian method to infer copy number clones from single-cell rna and atac sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645363/ https://www.ncbi.nlm.nih.gov/pubmed/37917660 http://dx.doi.org/10.1371/journal.pcbi.1011557 |
work_keys_str_mv | AT patrunolucrezia abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT militesalvatore abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT bergaminriccardo abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT calonacinicola abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT donofrioalberto abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT anselmifabio abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT antoniottimarco abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT graudenzialex abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT caravagnagiulio abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT patrunolucrezia bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT militesalvatore bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT bergaminriccardo bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT calonacinicola bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT donofrioalberto bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT anselmifabio bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT antoniottimarco bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT graudenzialex bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing AT caravagnagiulio bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing |