Cargando…

A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing

Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Patruno, Lucrezia, Milite, Salvatore, Bergamin, Riccardo, Calonaci, Nicola, D’Onofrio, Alberto, Anselmi, Fabio, Antoniotti, Marco, Graudenzi, Alex, Caravagna, Giulio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645363/
https://www.ncbi.nlm.nih.gov/pubmed/37917660
http://dx.doi.org/10.1371/journal.pcbi.1011557
_version_ 1785134737829920768
author Patruno, Lucrezia
Milite, Salvatore
Bergamin, Riccardo
Calonaci, Nicola
D’Onofrio, Alberto
Anselmi, Fabio
Antoniotti, Marco
Graudenzi, Alex
Caravagna, Giulio
author_facet Patruno, Lucrezia
Milite, Salvatore
Bergamin, Riccardo
Calonaci, Nicola
D’Onofrio, Alberto
Anselmi, Fabio
Antoniotti, Marco
Graudenzi, Alex
Caravagna, Giulio
author_sort Patruno, Lucrezia
collection PubMed
description Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability.
format Online
Article
Text
id pubmed-10645363
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-106453632023-11-02 A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing Patruno, Lucrezia Milite, Salvatore Bergamin, Riccardo Calonaci, Nicola D’Onofrio, Alberto Anselmi, Fabio Antoniotti, Marco Graudenzi, Alex Caravagna, Giulio PLoS Comput Biol Research Article Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability. Public Library of Science 2023-11-02 /pmc/articles/PMC10645363/ /pubmed/37917660 http://dx.doi.org/10.1371/journal.pcbi.1011557 Text en © 2023 Patruno et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Patruno, Lucrezia
Milite, Salvatore
Bergamin, Riccardo
Calonaci, Nicola
D’Onofrio, Alberto
Anselmi, Fabio
Antoniotti, Marco
Graudenzi, Alex
Caravagna, Giulio
A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
title A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
title_full A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
title_fullStr A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
title_full_unstemmed A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
title_short A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing
title_sort bayesian method to infer copy number clones from single-cell rna and atac sequencing
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645363/
https://www.ncbi.nlm.nih.gov/pubmed/37917660
http://dx.doi.org/10.1371/journal.pcbi.1011557
work_keys_str_mv AT patrunolucrezia abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT militesalvatore abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT bergaminriccardo abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT calonacinicola abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT donofrioalberto abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT anselmifabio abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT antoniottimarco abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT graudenzialex abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT caravagnagiulio abayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT patrunolucrezia bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT militesalvatore bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT bergaminriccardo bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT calonacinicola bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT donofrioalberto bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT anselmifabio bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT antoniottimarco bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT graudenzialex bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing
AT caravagnagiulio bayesianmethodtoinfercopynumberclonesfromsinglecellrnaandatacsequencing