Cargando…
Deep learning fusion of satellite and social information to estimate human migratory flows
Human migratory decisions are driven by a wide range of factors, including economic and environmental conditions, conflict, and evolving social dynamics. These factors are reflected in disparate data sources, including household surveys, satellite imagery, and even news and social media. Here, we pr...
Autores principales: | Runfola, Daniel, Baier, Heather, Mills, Laura, Naughton‐Rockwell, Maeve, Stefanidis, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645578/ https://www.ncbi.nlm.nih.gov/pubmed/38024452 http://dx.doi.org/10.1111/tgis.12953 |
Ejemplares similares
-
Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images
por: Singh, Abhilash, et al.
Publicado: (2023) -
Migratory Herbivorous Waterfowl Track Satellite-Derived Green Wave Index
por: Shariatinajafabadi, Mitra, et al.
Publicado: (2014) -
Plankton Imagery Data Inform Satellite‐Based Estimates of Diatom Carbon
por: Chase, A. P., et al.
Publicado: (2022) -
Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques
por: Fasano, Giancarmine, et al.
Publicado: (2013) -
Predicting road quality using high resolution satellite imagery: A transfer learning approach
por: Brewer, Ethan, et al.
Publicado: (2021)