Cargando…
Herbalism and glass-based materials in dentistry: review of the current state of the art
Half a million different plant species are occurring worldwide, of which only 1% has been phytochemically considered. Thus, there is great potential for discovering novel bioactive compounds. In dentistry, herbal extracts have been used as antimicrobial agents, analgesics, and intracanal medicaments...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645656/ https://www.ncbi.nlm.nih.gov/pubmed/37962680 http://dx.doi.org/10.1007/s10856-023-06764-w |
Sumario: | Half a million different plant species are occurring worldwide, of which only 1% has been phytochemically considered. Thus, there is great potential for discovering novel bioactive compounds. In dentistry, herbal extracts have been used as antimicrobial agents, analgesics, and intracanal medicaments. Glass-ionomer cement (GIC) and bioactive glass (BAG) are attractive materials in dentistry due to their bioactivity, adhesion, and remineralisation capabilities. Thus, this review summarizes the evidence around the use of phytotherapeutics in dental glass-based materials. This review article covers the structure, properties, and clinical uses of GIC and BAG materials within dentistry, with an emphasis on all the attempts that have been made in the last 20 years to enhance their properties naturally using the wisdom of traditional medicines. An extensive electronic search was performed across four databases to include published articles in the last 20 years and the search was concerned only with the English language publications. Publications that involved the use of plant extracts, and their active compounds for the green synthesis of nanoparticles and the modification of GIC and BAG were included up to May 2023. Plant extracts are a potential and effective candidate for modification of different properties of GIC and BAG, particularly their antimicrobial activities. Moreover, natural plant extracts have shown to be very effective in the green synthesis of metal ion nanoparticles in an ecological, and easy way with the additional advantage of a synergistic effect between metal ions and the phytotherapeutic agents. Medicinal plants are considered an abundant, cheap source of biologically active compounds and many of these phytotherapeutics have been the base for the development of new lead pharmaceuticals. Further research is required to assess the safety and the importance of regulation of phytotherapeutics to expand their use in medicine. GRAPHICAL ABSTRACT: [Image: see text] |
---|