Cargando…
Inhibition of lipopolysaccharide-induced inflammation by trophoblast-conditioned medium and trophoblast-derived extracellular vesicles in human middle ear epithelial cells
Otitis media is a common disease but can cause severe inner ear inflammation and hearing loss if it persists for more than two weeks. This study elucidates the inflammation-inhibiting efficacy of conditioned medium (CM) and extracellular vesicles (EVs) derived from human trophoblast (TB) cells in li...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645728/ https://www.ncbi.nlm.nih.gov/pubmed/37963902 http://dx.doi.org/10.1038/s41598-023-46731-7 |
Sumario: | Otitis media is a common disease but can cause severe inner ear inflammation and hearing loss if it persists for more than two weeks. This study elucidates the inflammation-inhibiting efficacy of conditioned medium (CM) and extracellular vesicles (EVs) derived from human trophoblast (TB) cells in lipopolysaccharide (LPS)-induced human middle ear epithelial cells (HMEECs). TB-conditioned medium (TB-CM) reduced the inflammatory response and regulated mucin and epithelial sodium channel genes in LPS-induced HMEECs. The underlying mechanism of cell migration during inflammatory healing in LPS-induced HMEECs treated with TB-CM was determined by RNA-sequencing analysis. Specifically, the NF-κB pathway related to the copper metabolism MURR1 domain protein was studied and verified through siRNA. This elucidation of the anti-inflammatory effect of TB-CM and TB-derived EVs demonstrates their clinical potential to treat chronic inflammation. |
---|