Cargando…

The formation of K(V)2.1 macro-clusters is required for sex-specific differences in L-type Ca(V)1.2 clustering and function in arterial myocytes

In arterial myocytes, the canonical function of voltage-gated Ca(V)1.2 and K(V)2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, K(V)2.1 also plays a sex-specific role by promoting the clustering and activity...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsumoto, Collin, O’Dwyer, Samantha C., Manning, Declan, Hernandez-Hernandez, Gonzalo, Rhana, Paula, Fong, Zhihui, Sato, Daisuke, Clancy, Colleen E., Vierra, Nicholas C., Trimmer, James S., Fernando Santana, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645748/
https://www.ncbi.nlm.nih.gov/pubmed/37963972
http://dx.doi.org/10.1038/s42003-023-05527-1
Descripción
Sumario:In arterial myocytes, the canonical function of voltage-gated Ca(V)1.2 and K(V)2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, K(V)2.1 also plays a sex-specific role by promoting the clustering and activity of Ca(V)1.2 channels. However, the impact of K(V)2.1 protein organization on Ca(V)1.2 function remains poorly understood. We discovered that K(V)2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of K(V)2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the K(V)2.1 clustering site (K(V)2.1(S590A)) eliminated K(V)2.1 macro-clustering and sex-specific differences in Ca(V)1.2 cluster size and activity. We propose that the degree of K(V)2.1 clustering tunes Ca(V)1.2 channel function in a sex-specific manner in arterial myocytes.