Cargando…

Agave amica a potential model for the study of agavins metabolism

Fructans found in agave are called agavins, highly branched neo-fructans. They are essential on the yield and quality of Tequila production. The need for agave specimens with higher accumulation of agavins became essential before the growing demand of such products. To get such specimens, understand...

Descripción completa

Detalles Bibliográficos
Autores principales: Salomé-Abarca, Luis Francisco, Márquez-López, Ruth Esperanza, López, Mercedes G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645838/
https://www.ncbi.nlm.nih.gov/pubmed/37964003
http://dx.doi.org/10.1038/s41598-023-47062-3
Descripción
Sumario:Fructans found in agave are called agavins, highly branched neo-fructans. They are essential on the yield and quality of Tequila production. The need for agave specimens with higher accumulation of agavins became essential before the growing demand of such products. To get such specimens, understanding agavins metabolism is a quintessential requirement. For this, a more efficient biological model is required. The recently reclassified Agave amica possesses the potential to gather the requirements for becoming such a model. Therefore, this study dealt with the characterization of carbohydrates in the bulbs of A. amica focusing on fructans. Moreover, it tested and described its feasibility as model for the accelerated study of agavins. Infrared analysis unveiled potential content of fructans in the bulbs of A. amica. Furthermore, high performance thin layer chromatography detected fructooligosaccharides. High performance anion exchange chromatography confirmed a polydisperse mixture of branched fructans. Gas chromatography–mass spectrometry analysis demonstrated agavins like structures in the bulbs of A. amica. Moreover, total fructan content and multivariate data analysis through bulb’s age demonstrated their correlation. Thus, the presence of agavins, their correlation with phenology, and their technical advantages highlighted the feasibility of this species as a potential new biological model for the study of agavins’ metabolism.