Cargando…
Node embedding-based graph autoencoder outlier detection for adverse pregnancy outcomes
Adverse pregnancy outcomes, such as low birth weight (LBW) and preterm birth (PTB), can have serious consequences for both the mother and infant. Early prediction of such outcomes is important for their prevention. Previous studies using traditional machine learning (ML) models for predicting PTB an...
Autores principales: | Khan, Wasif, Zaki, Nazar, Ahmad, Amir, Masud, Mohammad M., Govender, Romana, Rojas-Perilla, Natalia, Ali, Luqman, Ghenimi, Nadirah, Ahmed, Luai A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645849/ https://www.ncbi.nlm.nih.gov/pubmed/37963898 http://dx.doi.org/10.1038/s41598-023-46726-4 |
Ejemplares similares
-
Infant Low Birth Weight Prediction Using Graph Embedding Features
por: Khan, Wasif, et al.
Publicado: (2023) -
Improved Graph Embedding for Robust Recognition with outliers
por: Li, Peiyang, et al.
Publicado: (2018) -
Outlier detection using autoencoders
por: Lyudchik, Olga
Publicado: (2016) -
Infant birth weight estimation and low birth weight classification in United Arab Emirates using machine learning algorithms
por: Khan, Wasif, et al.
Publicado: (2022) -
Graph Autoencoder with Preserving Node Attribute Similarity
por: Lin, Mugang, et al.
Publicado: (2023)