Cargando…
The network structure of hematopoietic cancers
Hematopoietic cancers (HCs) are a heterogeneous group of malignancies that affect blood, bone marrow and lymphatic system. Here, by analyzing 1960 RNA-Seq samples from three independent datasets, we explored the co-expression landscape in HCs, by inferring gene co-expression networks (GCNs) with fou...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645882/ https://www.ncbi.nlm.nih.gov/pubmed/37963971 http://dx.doi.org/10.1038/s41598-023-46655-2 |
Sumario: | Hematopoietic cancers (HCs) are a heterogeneous group of malignancies that affect blood, bone marrow and lymphatic system. Here, by analyzing 1960 RNA-Seq samples from three independent datasets, we explored the co-expression landscape in HCs, by inferring gene co-expression networks (GCNs) with four cancer phenotypes (B and T-cell acute leukemia -BALL, TALL-, acute myeloid leukemia -AML-, and multiple myeloma -MM-) as well as non-cancer bone marrow. We characterized their structure (topological features) and function (enrichment analyses). We found that, as in other types of cancer, the highest co-expression interactions are intra-chromosomal, which is not the case for control GCNs. We also detected a highly co-expressed group of overexpressed pseudogenes in HC networks. The four GCNs present only a small fraction of common interactions, related to canonical functions, like immune response or erythrocyte differentiation. With this approach, we were able to reveal cancer-specific features useful for detection of disease manifestations. |
---|