Cargando…
A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business
Safety stock is an important method to overcome variability in inventory management. The classical approach to safety stock decisions relies on historical demand and lead time statistical data, which may not capture the uncertainty and complexity of the real world. Human knowledge and experience are...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645967/ https://www.ncbi.nlm.nih.gov/pubmed/37963953 http://dx.doi.org/10.1038/s41598-023-46649-0 |
_version_ | 1785147422791434240 |
---|---|
author | Yiğit, Fatih |
author_facet | Yiğit, Fatih |
author_sort | Yiğit, Fatih |
collection | PubMed |
description | Safety stock is an important method to overcome variability in inventory management. The classical approach to safety stock decisions relies on historical demand and lead time statistical data, which may not capture the uncertainty and complexity of the real world. Human knowledge and experience are valuable assets for making better decisions, especially when facing unpredictable situations. The fuzzy method is widely used for employing human intuition for decisions. When fuzzy opinions are input, decisions can be made proactively rather than reactively while benefiting from future predictions. The paper aims to integrate human intuition using Hexagonal Type-2 Fuzzy Sets (HT2FS) for safety stock management. HT2FS is a generalization of Interval Type-2 Fuzzy Sets that can represent more uncertainty in the membership functions. Predictions may be integrated into the safety stock models using human intuition. The proposed model uses novel fuzzy approaches to integrate human intuition into the traditional safety stock model. Applying fuzzy sets to safety stock management allowed experts' opinions under fuzzy logic to be integrated into decision-making. The proposed novel approach uses the centre of gravity method of Polygonal Interval Type-2 Fuzzy sets for defuzzification, which is a computationally efficient method that can handle any shape of the footprint of uncertainty. A mathematical model is developed to validate fuzzy opinions that may replace historical data. The data is received from a real-life case, and human intuition is integrated using an expert’s input. After the validation, a real-life numerical example has been considered to illustrate the model and its validity compared to the classical model. The outcomes show that the proposed model may contribute to the classical models, mainly when experts' inputs offer good predictions. When expert opinion on HT2FS is used for a real-life case, the results show that the expert's better representation of future variances lowers total cost by 2.8%. The results, coupled with the sensitivity analysis, underline that the proposed approach may contribute to the literature on safety stock management. |
format | Online Article Text |
id | pubmed-10645967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106459672023-11-13 A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business Yiğit, Fatih Sci Rep Article Safety stock is an important method to overcome variability in inventory management. The classical approach to safety stock decisions relies on historical demand and lead time statistical data, which may not capture the uncertainty and complexity of the real world. Human knowledge and experience are valuable assets for making better decisions, especially when facing unpredictable situations. The fuzzy method is widely used for employing human intuition for decisions. When fuzzy opinions are input, decisions can be made proactively rather than reactively while benefiting from future predictions. The paper aims to integrate human intuition using Hexagonal Type-2 Fuzzy Sets (HT2FS) for safety stock management. HT2FS is a generalization of Interval Type-2 Fuzzy Sets that can represent more uncertainty in the membership functions. Predictions may be integrated into the safety stock models using human intuition. The proposed model uses novel fuzzy approaches to integrate human intuition into the traditional safety stock model. Applying fuzzy sets to safety stock management allowed experts' opinions under fuzzy logic to be integrated into decision-making. The proposed novel approach uses the centre of gravity method of Polygonal Interval Type-2 Fuzzy sets for defuzzification, which is a computationally efficient method that can handle any shape of the footprint of uncertainty. A mathematical model is developed to validate fuzzy opinions that may replace historical data. The data is received from a real-life case, and human intuition is integrated using an expert’s input. After the validation, a real-life numerical example has been considered to illustrate the model and its validity compared to the classical model. The outcomes show that the proposed model may contribute to the classical models, mainly when experts' inputs offer good predictions. When expert opinion on HT2FS is used for a real-life case, the results show that the expert's better representation of future variances lowers total cost by 2.8%. The results, coupled with the sensitivity analysis, underline that the proposed approach may contribute to the literature on safety stock management. Nature Publishing Group UK 2023-11-13 /pmc/articles/PMC10645967/ /pubmed/37963953 http://dx.doi.org/10.1038/s41598-023-46649-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Yiğit, Fatih A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
title | A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
title_full | A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
title_fullStr | A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
title_full_unstemmed | A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
title_short | A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
title_sort | novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645967/ https://www.ncbi.nlm.nih.gov/pubmed/37963953 http://dx.doi.org/10.1038/s41598-023-46649-0 |
work_keys_str_mv | AT yigitfatih anoveltype2hexagonalfuzzylogicapproachforpredictivesafetystockmanagementforadistributionbusiness AT yigitfatih noveltype2hexagonalfuzzylogicapproachforpredictivesafetystockmanagementforadistributionbusiness |