Cargando…

Thermodynamics of continental deformation

Continental deformation is known to be controlled by the interplay between tectonic and gravitational forces modulated by thermal relaxation-controlled lithospheric strength leading to oscillations around an equilibrium state, or to runaway extension. Using data-driven thermomechanical modelling of...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ajay, Cacace, Mauro, Scheck-Wenderoth, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646047/
https://www.ncbi.nlm.nih.gov/pubmed/37963946
http://dx.doi.org/10.1038/s41598-023-47054-3
Descripción
Sumario:Continental deformation is known to be controlled by the interplay between tectonic and gravitational forces modulated by thermal relaxation-controlled lithospheric strength leading to oscillations around an equilibrium state, or to runaway extension. Using data-driven thermomechanical modelling of the Alpine Himalayan Collision Zone, we demonstrate how deviations from an equilibrium between mantle dynamics, plate-boundary forces, and the thermochemical configuration of the lithosphere control continental deformation. We quantify such balance between the internal energy of the plate and tectonic forces in terms of a critical crustal thickness, that match the global average of present-day continental crust. It follows that thicker intraplate domains than the critical crust (orogens) must undergo weakening due to their increased internal energy, and, in doing so, they dissipate the acquired energy within a diffused zone of deformation, unlike the localized deformation seen along plate boundaries. This evolution is controlled by a dissipative thermodynamic feedback loop between thermal and mechanical relaxation of the driving energy in the orogenic lithosphere. Exponentially growing energy states, leading to runaway extension are efficiently dampened by enhanced dissipation from radioactive heat sources. This ultimately drives orogens with their thickened radiogenic crust towards a final equilibrium state. Our results suggest a genetic link between the thermochemical state of the crust and the tectonic evolution of silicate Earth-like planets.