Cargando…

Multisensory input modulates memory-guided spatial navigation in humans

Efficient navigation is supported by a cognitive map of space. The hippocampus plays a key role for this map by linking multimodal sensory information with spatial memory representations. However, in human navigation studies, the full range of sensory information is often unavailable due to the stat...

Descripción completa

Detalles Bibliográficos
Autores principales: Iggena, Deetje, Jeung, Sein, Maier, Patrizia M., Ploner, Christoph J., Gramann, Klaus, Finke, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646091/
https://www.ncbi.nlm.nih.gov/pubmed/37963986
http://dx.doi.org/10.1038/s42003-023-05522-6
Descripción
Sumario:Efficient navigation is supported by a cognitive map of space. The hippocampus plays a key role for this map by linking multimodal sensory information with spatial memory representations. However, in human navigation studies, the full range of sensory information is often unavailable due to the stationarity of experimental setups. We investigated the contribution of multisensory information to memory-guided spatial navigation by presenting a virtual version of the Morris water maze on a screen and in an immersive mobile virtual reality setup. Patients with hippocampal lesions and matched controls navigated to memorized object locations in relation to surrounding landmarks. Our results show that availability of multisensory input improves memory-guided spatial navigation in both groups. It has distinct effects on navigational behaviour, with greater improvement in spatial memory performance in patients. We conclude that congruent multisensory information shifts computations to extrahippocampal areas that support spatial navigation and compensates for spatial navigation deficits.